Adipose-derived stem cells differentiate to keratocytes in vitro
نویسندگان
چکیده
PURPOSE Adipose-derived stem cells (ADSC) are an abundant population of adult stem cells with the potential to differentiate into several specialized tissue types, including neural and neural crest-derived cells. This study sought to determine if ADSC express keratocyte-specific phenotypic markers when cultured under conditions inducing differentiation of corneal stromal stem cells to keratocytes. METHODS Human subcutaneous adipose tissue was obtained by lipoaspiration. ADSC were isolated by collagenase digestion and differential centrifugation. Side population cells in ADSC were demonstrated using fluorescence-activated cell sorting after staining with Hoechst 33342. Differentiation to keratocyte phenotype was induced in fibrin gels or as pellet cultures with serum-free or reduced-serum media containing ascorbate. Keratocyte-specific gene expression was characterized using western blotting, quantitative RT-PCR, and immunostaining. RESULTS ADSC contained a side population and exhibited differentiation to adipocytes and chondrocytes indicating adult stem-cell potential. Culture of ADSC in fibrin gels or as pellets in reduced-serum medium with ascorbate and insulin induced expression of keratocan, keratan sulfate, and aldehyde dehydrogenase 3 family, member A1 (ALDH3A1), products highly expressed by differentiated keratocytes. Expression of differentiation markers was quantitatively similar to corneal stromal stem cells and occurred in both serum-free and serum containing media. CONCLUSIONS ADSC cultured under keratocyte-differentiation conditions express corneal-specific matrix components. Expression of these unique keratocyte products suggests that ADSC can adopt a keratocyte phenotype and therefore have potential for use in corneal cell therapy and tissue engineering.
منابع مشابه
Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue
Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tiss...
متن کاملDifferentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملEffects of RF-EMF Exposure from GSM Mobile Phones on Proliferation Rate of Human Adipose-derived Stem Cells: An In-vitro Study
Background:As the use of mobile phones is increasing, public concern about the harmful effects of radiation emitted by these devices is also growing. In addition, protection questions and biological effects are among growing concerns which have remained largely unanswered. Stem cells are useful models to assess the effects of radiofrequency electromagnetic fields (RF-EMF) on other cell lines. S...
متن کاملDifferentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue into Cholinergic-like Cells: In Vitro Study
Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities. As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. Methods: In the current study, we set out to investigate the differentiation properties of human adip...
متن کاملAdvances in adipose-derived stem cells and cartilage regeneration: review article
The cartilage is a connective tissue that, due to the strength of its extracellular matrix, allows the tissue to tolerate mechanical stress without undergoing permanent deformation. It is responsible for the support of soft tissues and due to its smooth surface and elasticity, gives the joints the ability to slip and bend. excessive weight, excessive activity, or trauma can all cause cartilage ...
متن کاملIsolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth
Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...
متن کامل